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Abstract
We consider a pair of three-level atoms interacting with a common vacuum and
analyse the process of entanglement production due to spontaneous emission.
We show that in the case of closely separated atoms collective damping can
generate robust entanglement of the asymptotic states.

PACS numbers: 03.67.Mn, 03.65.Yz, 42.50.−p

1. Introduction

The important problem of the evolution of entanglement in realistic quantum systems
interacting with their environments was mainly discussed in the case of two two-level systems
(qubits). In that case, the interesting idea that dissipation can create rather than destroy the
entanglement was studied in detail. In particular, in the case of two-level atoms, the possible
production of robust or transient entanglement induced by the process of spontaneous emission
was shown [1–4].

Much more complex and interesting is the process of creation of entanglement involving
multilevel atoms. In such a case, quantum interference between different radiative transitions
can influence the dynamics of the system. For a pair of largely separated three-level atoms,
the role of such interference in the process of degradation of entanglement was studied in [5].
When the interatomic distance is comparable to the wavelength of the emitted radiation, the
coupling between the atoms via a common vacuum gives rise to the collective effects such as
collective damping and dipole–dipole interaction. Such effects are well known [6], particularly
in the case of two-level atoms. In the system of three-level atoms having closely lying excited
states, radiative coupling can produce a new interference effect in the spontaneous emission.
This effect manifests itself by the cross-coupling between radiation transitions with orthogonal
dipole moments [7]. All such collective properties of the system influence the entanglement
between three-level atoms.
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In the paper, we study the entanglement production between three-level atoms due to
collective damping (a detailed analysis of the entanglement evolution in the presence of all
collective effects will be presented elsewhere). In that case, the analysis is involved since there
is no simple necessary and sufficient condition of entanglement for a pair of d-level systems
with d � 3. The Peres–Horodecki separability criterion [8, 9] only shows that states which
are not positive after partial transposition (NPPT states) are entangled. But there can exist
entangled states which are positive after this operation [10] (bound entangled PPT states). The
problem of existence of bound entangled (i.e. non-distillable [11]) states can be analysed in
terms of the rank of the density matrix of the bipartite system and the ranks of its partial traces.
If a state is separable or bound entangled, then its rank must be larger than the ranks of partial
traces [12]. In the paper we focus on the possibility of creation of NPPT ‘free’ entangled
states, so we do not discuss these problems. To detect and quantify entanglement, we use the
negativity of partial transposition of the density matrix.

As we show, in the limit of small separation between the atoms, the process of photon
exchange between the atoms produces such correlations that the dynamics is not ergodic
and there are nontrivial asymptotic stationary states. We compute the explicit form of the
asymptotic state for any initial state and show that some of the asymptotic states are NPPT
states, even if the initial states were PPT states. This effect occurs, for example, for a large
class of diagonal, i.e. separable, initial states. We also give the example of a bound entangled
PPT state which evolves into the NPPT (i.e. distillable) asymptotic state.

2. Dynamical evolution of two three-level atoms

Consider two identical three-level atoms (A and B) in the V configuration. The atoms have
two near-degenerate excited states |1µ〉, |2µ〉 (µ = A, B) and ground states |3µ〉. Assume that
the atoms interact with the common vacuum and that the transition dipole moments of atom A
are parallel to the transition dipole moments of atom B. Due to this interaction, the process of
spontaneous emission from two excited levels to the ground state takes place in each individual
atom, but a direct transition between excited levels is not possible. Moreover, the coupling
between two atoms can be produced by the exchange of the photons. The evolution of an
atomic system can be described by the following master equation [6]:

dρ

dt
= (LA + LB + LAB)ρ, (2.1)

where for µ = A, B we have

Lµρ = γ13
(
2σ

µ

31ρσ
µ

13 − σ
µ

13σ
µ
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µ

13σ
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31

)
+ γ23
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. (2.3)

In equations (2.2) and (2.3), σµ

jk is the transition operator from |kµ〉 to |jµ〉 (µ = A, B) and the
coefficient γj3 represents the single-atom spontaneous-decay rate from the state |j 〉 (j = 1, 2)

to the state |3〉. The coefficients �j3 and �j3 are related to the coupling between two atoms
and are the collective damping and the dipole–dipole interaction potential, respectively. As
was shown in [7], in such an atomic system there is also possible the radiative process in which
atom A in the excited state |1A〉 loses its excitation which in turn excites atom B to the state
|2B〉. This cross-coupling between two atoms is sensitive to the orientation of the transition
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dipole moments of atoms, and in the present paper we study the model in which that coupling
is absent. We also assume that the spontaneous-decay rates satisfy

γ12 ≈ γ13 = γ. (2.4)

The remaining coefficients in equation (2.3) can be written as

�j3 = γGj3(R), �j3 = γFj3(R), (2.5)

where j = 1, 2 and R is the distance between the atoms. A detailed form of the functions
Gj3(R) and Fj3(R) depends on the geometry of the system [7], but in general, for R → ∞

Gj3(R), Fj3(R) → 0

and for R → 0

Gj3(R) → 1,

whereas the function Fj3(R) diverges.
The time evolution of the initial state ρ of the atomic system is given by the semi-group

{Tt }t�0 of completely positive linear mappings acting on density matrices [13], generated by
LA + LB + LAB. The properties of this semi-group crucially depend on the distance R between
the two atoms. As can be shown by a direct calculation, when the distance is large (compared
to the radiation wavelength), the semi-group {Tt }t�0 is uniquely relaxing with the asymptotic
state |3A〉 ⊗ |3B〉. On the other hand, when R is small, �13, �23 → γ and �13,�23 are large,
so we can use the approximation

�13 = �23 = γ and �13 = �23 = �. (2.6)

In that case, the semi-group is not uniquely relaxing and asymptotic stationary states are
nontrivial and depend on initial conditions.

We do not discuss the details of the time evolution of the system, but we focus on the
analysis of the asymptotic behaviour of the dynamics of atoms with a small separation, when
conditions (2.4) and (2.6) are satisfied. The master equation (2.1) can be used to obtain
differential equations for the matrix elements of any state ρ. We consider the matrix elements
of ρ with respect to the basis of C

3 ⊗ C
3 given by vectors

|jA〉 ⊗ |kB〉, j, k = 1, 2, 3 (2.7)

taken in the lexicographic order. The equations for ρlm, l,m = 1, . . . , 9 form a system
of linear differential equations which can be solved by elementary methods. Using these
solutions, after a long calculation, we obtain the explicit form of the asymptotic state ρas for
any initial state ρ with the matrix elements ρlm:

ρas =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 x 0 0 z −x −z w

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 z 0 0 y −z −y v

0 0 −x 0 0 −z x z −w

0 0 −z 0 0 −y z y −v

0 0 w 0 0 v −w −v t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.8)
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where

x = 1
8 (ρ22 + 2ρ33 + ρ44 + 2ρ77 − 2 Re ρ24 − 4 Re ρ37),

z = 1
4 (ρ36 − ρ38 − ρ76 + ρ78),

w = 1
4 (ρ26 + ρ28 + 2ρ39 − ρ46 − ρ48 − 2ρ79),

y = 1
8 (ρ22 + ρ44 + 2ρ66 + 2ρ88 − 2 Re ρ24 − 4 Re ρ68),

v = 1
4 (−ρ23 − ρ27 + ρ43 + ρ47 + 2ρ69 − 2ρ89)

(2.9)

and

t = 1 − 2x − 2y.

To get some insight into the process of creation of the nontrivial asymptotic state ρas, it may
be useful to consider the basis of collective states in C

9, given by the doubly excited states

|e1〉 = |1A〉 ⊗ |1B〉, |e2〉 = |2A〉 ⊗ |2B〉,
the ground state

|g〉 = |3A〉 ⊗ |3B〉
and generalized symmetric and antisymmetric Dicke states (see, e.g. [14])

|skl〉 = 1√
2
[|kA〉 ⊗ |lB〉 + |lA〉 ⊗ |kB〉],

|akl〉 = 1√
2
[|kA〉 ⊗ |lB〉 − |lA〉 ⊗ |kB〉], (2.10)

where k, l = 1, 2, 3; k < l. The states (2.10) are entangled, but in contrast to the case of
two-level atoms, they are not maximally entangled. One can also check that the doubly excited
states |e1〉, |e2〉 and the symmetric Dicke states |skl〉 decay to the ground state |g〉, whereas
antisymmetric states |a13〉 and |a23〉 decouple from the environment and therefore are stable.
Moreover, the state |a12〉 is not stable, but is asymptotically nontrivial. Note that the collective
states can be used to the direct characterization of the asymptotic behaviour of the system. In
particular, the parameters x and y in (2.8) are given by the populations in the antisymmetric
states |a13〉, |a23〉 and |a12〉:

x = 1
4 (〈a12|ρ|a12〉 + 2〈a13|ρ|a13〉),

y = 1
4 (〈a12|ρ|a12〉 + 2〈a23|ρ|a23〉).

The remaining parameters can be computed in terms of the coherences between the collective
states. Since the populations 〈a13|ρ|a13〉 and 〈a23|ρ|a23〉 are stationary, the states which have
the property of trapping the initial populations in |a13〉 or |a23〉, create the nontrivial asymptotic
state ρas with the stationary entanglement. On the other hand, the population in the state |a12〉
is not stable, but can be transformed into 〈a13|ρ|a13〉 and 〈a23|ρ|a23〉 in such a way that the
values of the parameters x and y are fixed. The explicit examples of such a behaviour of the
system will be discussed in the following section.

3. Generation of NPPT states

To describe the process of the creation of correlation between two atoms leading to their
entanglement, we need the effective measure of mixed-states entanglement. For such a
measure one usually takes the entanglement of the formation EF (ρ) [15], but in practice it
is not known how to compute this measure for the pairs of d-level systems in the case when
d > 2. A computable measure of entanglement proposed in [16] is based on the trace norm of
the partial transposition ρPT of the state ρ. From the Peres–Horodecki criterion of separability
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[8, 9], it follows that if ρPT is not positive, then ρ is not separable and one defines the negativity
of the state ρ as

N(ρ) = ||ρPT|| − 1

2
. (3.1)

N(ρ) is equal to the absolute value of the sum of the negative eigenvalues of ρPT and is an
entanglement monotone, but it cannot detect bound entangled states [10]. Using measure
(3.1), one can check that generalized Dicke states are indeed not maximally entangled, since

N(|skl〉) = N(|akl〉) = 1
2 .

In this section, we study the negativity of the asymptotic states (2.8). For such initial
states, where only the populations in antisymmetric Dicke states are nonzero, it is possible to
obtain an analytic expression for asymptotic negativity. By a direct calculation one shows that

N(ρas) = 1
2 [

√
4(x2 + y2) + t2 − t]. (3.2)

Note that every nontrivial asymptotic state from this class is entangled. On the other hand,
the asymptotic negativity for initial states with nonzero coherences can only be studied
numerically.

3.1. Pure separable initial states

We start with pure states (2.7). It is obvious that the initial states |1A〉 ⊗ |1B〉 and |2A〉 ⊗ |2B〉
decay to the ground state |g〉. On the other hand, the initial state |1A〉 ⊗ |3B〉 (atom A in the
excited state and atom B in the ground state) has the population in the Dicke state |a13〉 which
is equal to 1

2 , thus for that state

x = 1
4 , t = 1

2 and y = z = w = v = 0

and the asymptotic state is entangled with the negativity

N(ρas) =
√

2 − 1

4
. (3.3)

Similarly, the state |2A〉 ⊗ |3B〉 has the population 1
2 in the state |a23〉 and also produces an

asymptotic state with the same value of entanglement. The same behaviour can be observed
for the initial states |3A〉 ⊗ |1B〉 and |3A〉 ⊗ |2B〉.

When the two atoms are initially in different excited states, i.e. we have the states
|1A〉 ⊗ |2B〉 or |2A〉 ⊗ |1B〉, then the initial populations in the states |a13〉 and |a23〉 are
equal to zero, but the population in the non-stable state |a12〉 is nonzero and equals 1

2 . During
the evolution this population is transformed into the states |a13〉 and |a23〉 in such a way that
the asymptotic state ρas satisfies

〈a12|ρas|a12〉 = 0

and

〈a13|ρas|a13〉 = 〈a23|ρas|a23〉 = 1
4 .

Thus the state ρas is also entangled, but its negativity is less than (3.3) and equals (
√

6 − 2)/8.
Interesting examples of a pure non-diagonal initial state are given by the following

superpositions of states |1A〉 ⊗ |2B〉 and |1A〉 ⊗ |3B〉:
�φ = cos φ|1A〉 ⊗ |2B〉 + sin φ|1A〉 ⊗ |3B〉, φ ∈ [0, π/2]. (3.4)

In that case, the initial populations

〈a13|P�φ
|a13〉 = 1

2 sin2 φ, 〈a23|P�φ
|a23〉 = 0

5
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Figure 1. Asymptotic negativity of (3.4) as a function of φ. The values (
√

6−2)/8 and (
√

2−1)/4
are indicated by dashed and dotted lines, respectively.

and

〈a12|P�φ
|a12〉 = 1

2 cos2 φ

are transformed into

〈a13|ρas|a13〉 = 1
2 sin2 φ + 1

4 cos2 φ = 1
8 (3 − cos 2φ),

〈a23|ρas|a23〉 = 1
4 cos2 φ,

〈a12|ρas〈a12| = 0.

In that case, the asymptotic states are parametrized by

x = 1
16 (3 − cos 2φ), y = 1

8 cos2 φ, t = 1
2 , v = − 1

8 sin 2φ

and their negativity can be computed numerically. In figure 1, we plot the asymptotic negativity
as a function of φ. This figure shows that for some values of the parameter φ superposition
(3.4) can have larger asymptotic negativity than that achieved by the initial state |1A〉 ⊗ |3B〉,
which has the maximal value of negativity produced by the dynamics for pure diagonal initial
states.

3.2. Some mixed separable initial states

For the incoherent mixtures of pure states |1A〉 ⊗ |2B〉 and |1A〉 ⊗ |3B〉, i.e. the initial states

ρ = p|1A〉 ⊗ |2B〉〈1A| ⊗ 〈2B| + (1 − p)|1A〉 ⊗ |3B〉〈1A| ⊗ 〈3B|, (3.5)

the dynamics also produces entangled asymptotic states. One can check that their negativity
is given by

N(ρas) = 1√
32

√
4 − 2p + p2 − 1

4 (3.6)

and observe that (3.6) as the function of mixing parameter p is convex, so in contrast to the
coherent superposition, the asymptotic negativity never exceeds (3.3). Analogous properties
of negativity can be found for another mixtures of two pure diagonal states (figure 2).

To study the asymptotic entanglement produced for general class of mixed diagonal states,
we consider two parameters to describe asymptotic states: their negativity and the degree of
mixture given by the linear entropy

SL(ρ) = 9
8 tr(ρ − ρ2). (3.7)
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Figure 2. Asymptotic negativity for the mixtures of states |1A〉 ⊗ |2B〉 and |1A〉 ⊗ |3B〉 (dotted
line), |1A〉 ⊗ |1B〉 and |1A〉 ⊗ |3B〉 (dashed line) and |1A〉 ⊗ |3B〉 and |2A〉 ⊗ |3B〉 (solid line).
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Figure 3. The set 	as for the asymptotic states for all diagonal initial states. The solid line
corresponds to curve (3.8), the dotted line corresponds to (3.9) and the dashed line corresponds
to (3.10).

As we show numerically, the set of all asymptotic states corresponding to the diagonal initial
states is represented on the entropy-negativity plane by the region 	as bounded by three
curves (figure 3). The boundary curves can be found analytically and are given by the
following equations: the solid line in figure 3 is described by

N = 1

8

√
2s − 1

4

(
1 +

√
3s − 8 − 1

3

)
, SL = 9

64
(8 − s) (3.8)

for s ∈ [3, 8], the dotted line is given by

N = 1
4 (

√
2s − √

s − 1 − 1), SL = 9
16 (2 − s) (3.9)

for s ∈ [1, 2], and finally, the dashed line is described by equations

N = 1
8

√
2s − 1

4 , SL = 9
64 (8 − s), (3.10)

where s ∈ [9/16, 45/64].
Every asymptotic state corresponding to the diagonal initial state is given by some point

from the set 	as. In particular, on curve (3.8) lie asymptotic states produced from the mixture
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of the states |1A〉 ⊗ |1B〉 and |1A〉 ⊗ |2B〉. Asymptotic states corresponding to the mixture of
|1A〉 ⊗ |1B〉 and |1A〉 ⊗ |3B〉 lie on curve (3.9), whereas on curve (3.10) lie asymptotic states
obtained from the mixture of states |1A〉 ⊗ |2B〉 and |1A〉 ⊗ |3B〉.

An example of the state lying inside the set 	as is given by the asymptotic state generated
from the initial state

ρ∞ = 1
9 119 (3.11)

which is maximally mixed state of two qutrits. One can check that the asymptotic state is
given by formula (2.8) with x = y = 1/12 and t = 2/3. The corresponding values of linear
entropy and negativity are equal to 9/16 and (3

√
2 − 4)/12, respectively. As we see, even in

that case, the incoherent process of spontaneous emission produces such correlations which
entangle two atoms and diminish the entropy of the system.

3.3. Initial states with bound entanglement

Consider now the following initial states:

ρa = 1

8a + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 α 0 β

0 0 0 0 0 0 0 a 0
a 0 0 0 a 0 β 0 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.12)

where

α = 1 + a

2
, β =

√
1 − a2

2
and 0 < a < 1. The states (3.12) have positive partial transposition, but nevertheless are
entangled [10]. Their entanglement is bound and cannot be distilled [11]. It can be checked by
applying, for example, the realignment criterion of entanglement [17, 18]. The criterion can
be stated as follows: if the trace norm of the realigned state R(ρ) is greater than 1, the state ρ

is entangled. We can also introduce the measure of entanglement based on this criterion. The
so-called realignment negativity [19] NR(ρ) of the state ρ is defined by the formula

NR(ρ) = ||R(ρ)|| − 1.

This measure can detect some bound entangled states, but not all of them. In the case of states
(3.12), the values of NR(ρa) are contained in the interval (0, 0.0035) and the maximal value
is attained for a = 1

4 .
Numerical analysis of the evolution of the initial states (3.12) indicates that their

realignment negativity very rapidly goes to zero, but for the later times the states become
entangled with positive values of negativity. Thus the dynamics studied in the paper has
a remarkable property: bound entangled initial states (3.12) evolve into ‘free’ entangled
asymptotic states. By a direct calculation one can show that the asymptotic states have the
form (2.8) with parameters

x = 5a + 1

64a + 8
, y = 3a

32a + 4
, w = −

√
1 − a2

32a + 4
, t = 21a + 3

32a + 4
.

The values of negativity of those asymptotic states are plotted in figure 4.
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Figure 4. Asymptotic negativity of the initial states (3.12) as a function of the parameter a.

4. Conclusions

We have studied entanglement production in the system of two three-level atoms in the V
configuration, coupled to the common vacuum. In the case of small (compared to the radiation
wavelength) separation between the atoms, the system has nontrivial asymptotic states which
can be entangled even if the initial states were separable. Particular examples of such separable
initial states are pure states in which the atoms are in different excited states. The process
of the photon exchange between the atoms produces correlations that entangle two atoms.
It is interesting that when we superpose such initial states, we can enlarge the amount of
the asymptotic entanglement. We have also characterized the entanglement of asymptotic
states for mixed diagonal initial states. Using the description of mixed states in terms of the
degree of mixture and entanglement, we have found the region on the mixture-entanglement
plane corresponding to such asymptotic states. We have also shown by considering a specific
example that the dynamical evolution of that system brings bound entangled PPT states into
‘free’ entangled NPPT asymptotic states.
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